Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(46): 32175-32184, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37928856

RESUMO

Landfill leachate poses a threat to the environment and human health, and its complex composition made it difficult to treat. Among the methods for treating landfill leachate, the physicochemical combination method is considered to have significant effectiveness, low cost, and application potential. In this study, we propose a new method of coagulation and hydrodynamic cavitation/chlorine dioxide (HC/ClO2) for treating landfill leachate. The optimal conditions for coagulation and HC/ClO2 treatment were investigated experimentally. Under the optimal conditions for coagulation, the COD removal rate was 60.14%. Under the optimal HC/ClO2 treatment conditions, the COD removal rate was 58.82%. In the combined coagulation and HC/ClO2 process, the COD removal rate was 83.58%. Thus, the proposed method can significantly reduce the organic load before subsequent biological treatment processes, thereby reducing the operation cycles and cost of biological treatment.

2.
Molecules ; 28(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298823

RESUMO

With the development of the chemical industry, benzene, toluene, ethylbenzene, and xylene (BTEX) have gradually become the major indoor air pollutants. Various gas treatment techniques are widely used to prevent the physical and mental health hazards of BTEX in semi-enclosed spaces. Chlorine dioxide (ClO2) is an alternative to chlorine as a secondary disinfectant with a strong oxidation ability, a wide range of action, and no carcinogenic effects. In addition, ClO2 has a unique permeability which allows it to eliminate volatile contaminants from the source. However, little attention has been paid to the removal of BTEX by ClO2, due to the difficulty of removing BTEX in semi-enclosed areas and the lack of testing methods for the reaction intermediates. Therefore, this study explored the performance of ClO2 advanced oxidation technology on both liquid and gaseous benzene, toluene, o-xylene, and m-xylene. The results showed that ClO2 was efficient in the removal of BTEX. The byproducts were detected by gas chromatography-mass spectrometry (GC-MS) and the reaction mechanism was speculated using the ab initio molecular orbital calculations method. The results demonstrated that ClO2 could remove the BTEX from the water and the air without causing secondary pollution.


Assuntos
Poluição do Ar em Ambientes Fechados , Benzeno , Benzeno/química , Tolueno/química , Xilenos/química , Poluição do Ar em Ambientes Fechados/análise , Derivados de Benzeno/química , Gases/análise , Monitoramento Ambiental/métodos
3.
Ultrason Sonochem ; 61: 104834, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31678867

RESUMO

Managing environmental contamination with Benz[a]anthracene (B[a]A) is essential due to its carcinogenic, teratogenic and mutagenic effects on humans and the environment. At present, the mainly B[a]A degradation methods used are photodegradation, bioremediation and traditional advanced oxidation, although they all have disadvantages. In this study, B[a]A was degraded by hydrodynamic cavitation (HC), chlorine dioxide (ClO2), or an innovative combination of the two methods. According to high performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) analysed the degradation products and degradation pathway of B[a]A, with the kinetics of different degradation methods discussed. Under optimal conditions, HC combined with ClO2 oxidation can further degrade products to achieve ring cleavage. Compared with the two separate degradation process methods, the combined method exerts a synergistic effect on the degradation of B[a]A, with an enhancement factor of 1.48. Experimental results showed that the combination method can realize enhanced complete degradation of B[a]A, reduce ClO2 requirements, improve efficiency, reduce energy consumption and produce less harmful products with ring cleavage achieved.

4.
Nanoscale Res Lett ; 14(1): 108, 2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30915708

RESUMO

In this work, a comprehensive investigation of the composite Ag@AgCl/ZnCo2O4 microspheres photocatalyst, prepared by a facile two-step method, is presented, and using complementary characterization tools such as X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X ray spectroscopy (EDX), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED), X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectroscopy (DRS), and Brunauer-Emmett-Teller (BET). Results show that the composite Ag@AgCl/ZnCo2O4 photocatalyst has good microspheres morphology and high crystalline and its absorption intensity in the whole spectrum range is higher than that of pure ZnCo2O4. It is observed that the specific surface area of the composite Ag@AgCl/ZnCo2O4 photocatalyst and the adsorption efficiency of rhodamine B (RhB) increase as a result of deposition of Ag@AgCl. In the Ag@AgCl/ZnCo2O4 degradation system of RhB, the photocatalytic degradation rate of 0.2Ag@AgCl/ZnCo2O4 becomes 99.4% within 120 min, and RhB is almost completely degraded. The reaction rate constant of composite 0.2Ag@AgCl/ZnCo2O4 photocatalyst is found to be 0.01063 min-1, which is 1.6 times that of Ag@AgCl and 10 times of the minimum value of ZnCo2O4. In addition, the radical capture experiment indicates that, in the reaction system of Ag@AgCl/ZnCo2O4, the main oxidative species of Ag@AgCl/ZnCo2O4 photocatalyst are superoxide anion (O·- 2- 2) and hole (h+) and not hydroxyl radical (·OH). Based on the results, a Z-scheme plasmon photocatalytic mechanism of Ag@AgCl/ZnCo2O4 composite system is proposed, to elucidate the RhB degradation.

5.
Water Sci Technol ; 80(8): 1571-1580, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31961819

RESUMO

Rhodamine B (RhB), widely used as an industrial dye, is a toxic organic that is hazardous to human health and can cause water pollution. In this study, the removal rate of RhB was investigated by the following methods: hydrodynamic cavitation (HC) operated individually, and HC combined with oxidants H2O2 or ClO2. The effect of different operating parameters including pressure (2-6 bar) and initial pH (2-8) on the extent of degradation was investigated using an orifice plate as the cavitation device to achieve maximum removal of RhB. Under the parameters of HC, the effect of different loadings was investigated: H2O2 (n(RhB):n(H2O2) was varied from 1:17.60 to 1:211.28) and ClO2 (n(RhB):n(ClO2) was varied from 1:8.87 to 1:177.53). A combination of cavitation and H2O2 or ClO2 resulted in degradations of 80.6% and 95.3%. The results indicated that the combination of HC and oxidants was better than the individual HC process for the degradation of RhB. When combining HC with H2O2 or ClO2, the synergistic coefficients of 62.54 and 74.79 were obtained. The combination of HC and ClO2 was proven to be more effective for the removal of RhB compared to HC alone and the hybrid process of HC and H2O2.


Assuntos
Hidrodinâmica , Peróxido de Hidrogênio , Rodaminas
6.
J Hazard Mater ; 166(2-3): 842-7, 2009 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-19155128

RESUMO

The explosion characteristics of chlorine dioxide gas have been studied for the first time in a cylindrical exploder with a shell capacity of 20 L. The experimental results have indicated that the lower concentration limit for the explosive decomposition of chlorine dioxide gas is 9.5% ([ClO(2)]/[air]), whereas there is no corresponding upper concentration limit. Under the experimental conditions, and within the explosion limits, the pressure of explosion increases with increasing concentration of chlorine dioxide gas; the maximum pressure of explosion relative to the initial pressure was measured as 0.024 MPa at 10% ClO(2) and 0.641 MPa at 90% ClO(2). The induction time (the time from the moment of sparking to explosion) has also been found to depend on the concentration of chlorine dioxide gas; thus, at 10% ClO(2) the induction time was 2195 ms, but at 90% ClO(2) the induction time was just 8 ms. The explosion reaction mechanism of ClO(2) is of a degenerate chain-branching type involving the formation of a stable intermediate (Cl(2)O(3)), from which the chain-branching occurs. Chain initiation takes place at the point of ignition and termination takes place at the inner walls of the exploder.


Assuntos
Compostos Clorados , Explosões , Substâncias Explosivas/química , Óxidos , Gases , Teste de Materiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...